中国自然科学核心期刊

ISSN 1000-3096 CN 37-1151/P

海洋科学 MARINE SCIENCES

第 40 卷 第 1 期 Vol.40 No.1

Science Press

中国科学院海洋研究所 主办 科 学、生 族 社 出版

	目次 2016年1月15日/第1期/总319期
海洋科学	研究报告 REPORTS
ATTE SCIAN	1/基于线粒体 COI 基因的毛蚶群体遗传多样性 田吉腾,侯 丫,刘志鸿,杨爱国,吴 彪,周丽青,董春光
N. ES.	10/单体牡蛎诱导变态的研究 陈 亨,方 军,滕爽爽,肖国强,张炯明,柴雪良
HAI YANG KE XUE	18/运用分子标记辅助构建海带核心种质资源
	化千利,十 口 刘矿城 本晓梅 罗此药 光泄娜 工利芒 관让士 弘 侣 田 禽
	刘廷晓,子呒徒,夕世来,武海卿,工利斤,孙仁心,孙 刘,凶 釜 25/2 ▲ 日/她这时打出世世任时泪座和扑座哥巫士的町人士八七
1977 年创刊	25/3 个凡纳浜刈虾引进耕体刈温度和益度耐受力的配合力分析 れた同、対象系のまた地域の北まる
(月刊)	胡心国,刘廷男, 哀瑜鹏, 张嘉辰
第 40 卷 第 1 期	32/贝澡混养对大西洋鲑养殖废水的生物滤除
国内外公开发行	马晓娜,李 甍,孙国祥,王顺奎,于凯松,刘 鹰
	40/夏季辽东湾西部海域大型底栖动物群落结构与多样性
中国标准刊号 <u>ISSN 1000-3096</u> CN 37-1151/P	王 智,曲方圆,隋吉星,王振钟,李相星,赵 宁,于子山
	48/饵料、温度和个体规格对脉红螺摄食的影响
	宋军鹏,房建兵,宋 浩,张 涛,班绍君,潘 洋,李朝霞
	54/福建兴化湾大型底栖动物种类组成和生物多样性
	邓玉娟,董树刚,刘晓收
国内邮发代号 2-655 国外发行代号 M6666	64/细胞的氧化还原状态对浒苔孢子囊形成的影响
	王 菁,牛从从,王 辉,郇 丽
	68/黄河尾闾及近岸沉积物中重金属的含量分布及生态风险评价
	赵明明,王传远,孙志高,孙万龙,吕迎春,赵浩杰,卢 勇
主管:中国科学院 主办:中国科学院海洋研究所 主始: 李銖剛	76/钦州湾海水中石油烃时空变化特征及其影响因素
	杨 斌,钟秋平,张晨晓,鲁栋梁,梁燕茹,李尚平
	85/中国沅洋作业渔场海夷温度异常年际变动分析
出版: 斜学出版社	2017年1月11日1日初時代111月7月前年初2月3月7日 纪世建、周为峰、樊 伟、靳少非、崔雪森
印刷:北京中科印刷有限公司	04/ 真强度 人 米 汪 动 对 息 州 湾 滨 海 湿 地 环 谙 的 影响 及 目 对 等
总发行:北京报刊发行局 订购处:全国各地邮局	叶 翔,王爱军,马 牧,方建勇
国外总	
发 行: 中国国际图书贸易总公司	新元に文 ARTICLE
(北京 399 信箱, 100044)	101/股州湾流速场的声层析反演研究
	刘旭东,林 巨,王 欢,朱小华
	112/长江口北槽柱状沉积物粒度分布特征及沉积环境指示意义
	邓智瑞,何 青,邢超锋,郭磊城,王宪业
本期责任编辑:张培新	123/西北太平洋海洋温度锋生与锋消机制的初步研究
	赵 宁,韩 震,刘贤博
编辑部	132/基于 20 a 卫星高度计数据的黑潮变异特征
地址: 青岛南海路 7 号, 266071 电话: 0532-82898755, 82898751, 82898953 传真: 0532-82898755	赵新华,杨俊钢,崔伟
	研究综述
	138/水产胶原蛋白的提取纯化及理化特性的研究进展
E-mail: hykxbjb@163.com	杨桠楠,李彩燕,钱国英
Http://www.marinejournal.cn	147/水产动物雷帕霉素受体信号通路的研究进展
	辛 芳,王 雷,刘 梅,王宝杰,蒋克勇,孙国琼
	155/北太平洋经向翻转环流和执盐输送研究综述
每月 15 日出版 定价, 38 00 元	刘洪伟,张启龙,段永亮,徐永生

研究论文 · Linn ARTICLE

西北太平洋海洋温度锋生与锋消机制的初步研究

赵 宁1,韩 震1,2,刘贤博1

(1. 上海海洋大学 大洋渔业资源可持续开发省部共建教育部重点实验室, 上海 201306; 2. 上海海洋大学 海 洋科学学院, 上海 201306)

> 摘要:海洋锋面区域对气候变化以及海气耦合作用的影响非常显著,通过分析其形成机制,可以帮助进一步了解海洋与大气的相互作用过程以及其物理过程。利用 Argo 数据、NCEP/NCAR 再分析数据和 遥感风场数据对西北太平洋的混合层温度与温度锋面的变化机制进行了研究。基于海洋混合层的热量 收支模型,发现在北太平洋区域的海洋混合层温度主要受到净热通量控制,同时还存在一个季节变化 明显的温度锋面。9~2月为温度锋面加强时期,3~4月温度锋面变化不明显,而5~8月温度锋面则迅速 减弱。根据研究,该温度锋面的加强与减弱主要是由于净热通量的南北差异造成的,而在净热通量中 则以短波辐射通量与潜热通量为主要影响因子。

关键词:西北太平洋;海洋混合层;海洋温度锋;锋生;锋消 中图分类号:P731.1 文献标识码:A 文章编号:1000-3096(2016)01-0123-09 doi:10.11759/hykx20130419002

海气交界面的热量交换对气候变化与海气耦合 作用有着至关重要的影响。早期的海洋的热量收支 研究通常采用一维模型^[1-2]。Qiu 与 Kelly^[3]在研究中, 建立了二维的混合层模型,其中平流项由艾克曼平 流与地转流构成。Moisan 与 Niiler^[4]则在研究中利用 连续性方程与热量守恒方程推导出了混合层垂向平 均的二维热量收支方程。2004年,Dong 和 Kelly^[5]在 研究中改进了Qiu 与 Kelly^[3]在 1993年引入的二维混 合层模型,并评估了墨西哥湾流区域的热量收支情 况,结果表明在受到湾流影响的区域,相较于净热 通量,地转流对混合层的热量收支影响更大。

海洋温度锋是海洋中不同水团之间海水温度急 剧变化的区域。大面积的海洋锋面区域通常被认为 是海洋表层动量与热通量驱动所致^[6]。20世纪80年 代早期,研究者们利用遥感数据,开展了对大面积 海域的海洋锋研究^[7-8]。锋面的判断标准通常会根据 研究区域的不同而有所不同,如 Kazmin 与 Rienecker^[6]采用的 $\left|\frac{\partial T}{\partial y}\right|$ 以及 Park 等^[9]采用的 $|\nabla T|$ 等。

考虑到锋面的变化通常与海表层的动量与热通量相关, Kazmin 与 Rienecker^[6]利用了一个简化的混合层模型 来分析锋面强度的变化机制。Qiu 与 Kawamura^[10]在 对北太平洋温度锋消研究中也提到了需用混合层模 型来对温度锋生与锋消机制的进行定量研究。目前, 对海洋温度锋的研究大多集中于锋面的时空变化, 而对锋面的锋生与锋消机制研究还较少。因此,本研 究以 Argo 数据、NCEP/NCAR 再分析数据以及遥感 风速数据为基础,建立海洋混合层热量收支方程, 对西北太平洋海域内海洋混合层热量收支以及海洋 温度锋变化机制进行了研究。

1 数据与方法

1.1 数据

本文选取的数据为国际太平洋研究中心/亚太数 据研究中心(International Pacific Research Center/Asia-Pacific Data-Research Center)提供的 2005~2012 年的 Argo 历史数据(Climatology dataset)、美国环境预报 中心(NCEP)和国家大气研究中心(NCAR)联合开发 的 NCEP/NCAR 再分析数据以及 Remote Sensing Systems 组织提供的 QuikScat/Ascat 卫星遥感风场数据。

Argo 历史数据中包含了月平均的海水温度与盐 度数据(水平分辨率为 1°×1°、垂向为 27 层)。而

[Foundation: Satellite Based High-tech Industrialization Demonstration Project of National Development and Reform Commission, No. 2009214; National Science & Technology Pillar Program, No. 2013BAD13B00] 作表的な、教会に対応のなどのでは、「大学校会」になった。

收稿日期: 2013-04-19; 修回日期: 2014-03-22

基金项目:国家发改委卫星高技术产业化示范工程项目(2009214);国家 科技支撑计划(2013BAD13B00)

作者简介: 赵宁(1988-), 男, 江苏南京人, 硕士, 主要从事海洋遥感研究, E-mail: 343599711@qq.com; 韩震(1969-), 通信作者, 男, 教授, 博士, E-mail: zhhan@shou.edu.cn

研究论文 · lim ARTICLE

NCEP/NCAR 再分析数据为日平均数据且采用了不 等距的高斯网格。因此,在计算时,我们利用双样条 线性插值法,将再分析数据以及风场数据插值到 1°×1°网格上。最后,将所有数据按月进行长年平均, 得到最终的月平均数据。

1.2 研究区域

我们选择的研究区域为西北太平洋开阔的大洋 区域(135°~170°E, 15°~35°N)。该区域存在两股洋流 系统,分别为黑潮续流(Kuroshio Extension)与亚热 带逆流(Subtropical Countercurrent),并形成了一个 存在明显季节性变化的温度、密度锋面,称为亚热带 锋(Subtropical Front)^[11-12]。

混合层的判定方法有很多,依据研究目的不同 而分类众多,可以大致分为:梯度法、温度差法与密 度差法等^[13-15]。本研究采用基于动态密度差的混合 层深度(Mixed Layer Depth, MLD)判别法。密度差可 以通过下式给出:

$$\Delta \sigma_{\rm T} = |\sigma(T + \Delta T, S, P) - \sigma(T, S, P)|$$
 (1)
其中, $\sigma_{\rm T} = \rho_{\rm s} - 1000$ 为基于温度计算的密度; T 为参考
深度的温度(10 m); ΔT 为给定的温度差值(本研究取
0.5°C); S 为参考深度的盐度, P 为压力(取 0), $\rho_{\rm s}$ 为海
水密度。各区域的混合层所在深度的密度可通过
 $\sigma_{\rm MLD} = \sigma_{\rm MLD} - \Delta \sigma$ 计算得出。此外,我们根据混合层的
性质,假设海水在混合层中处于充分混合的状态,
因此混合层温度(Mixed Layer Temperature, MLT)可
以由混合层内的海水温度的垂向平均值表示。

通过选取1月、4月、7月与10月作为4季的 代表月份,图1表示了研究区域的混合层温度以及 混合层深度的季节性变化。我们发现该区域混合层 深度较浅,年间深度均小于100m。冬、春两季,研 究区域的北部与南部的混合层深度均较中部区域深, 夏、秋两季则显示出北浅南深的现象。

由于地处亚热带区域,该区域的全年混合层温 度都较高,且大部分区域的温度大于 20℃。冬、春 两季,在 20°~30°N 之间,混合层温度随纬度的变化 梯度很大(即,温度锋面),而在夏、秋两季并不明显。 根据研究区域温度大致沿纬度变化,南高北低,故 可利用下式计算温度锋面的强度(Gradient Magnitude,*G*):

$$G = -\frac{\partial T}{\partial y} \tag{2}$$

图 2 给出了西北太平洋的温度锋面的时空分布。 该温度锋面从 10~11 月开始,在北部出现,锋面强度 约为 0.4℃/100km。同时, 锋面存在着西低东高的空间分布状态。在之后的冬季与春季间, 该锋面逐渐加强, 强度超过 0.4℃/100km 的区域扩大到 20°N 以北的整个西北太平洋海域。6 月份, 锋面面积最大, 中心强度超过 0.8℃/100km; 随后迅速消失。

1.3 方法

1.3.1 混合层模型

在研究海洋上层温度变化时,混合层温度变化 模型是较为常用的研究方法之一。通过对海洋混合 层的热量收支进行分析,我们可以进一步分析海洋 温度锋面的生消机制。我们所采用的模型,可以通过 下式表示^[6,16]:

$$\frac{\partial T}{\partial t} = \frac{Q_{\text{net}} - q(-h)}{\rho_0 c_p h} - V_e \frac{\partial T}{\partial y} - \omega \frac{\Delta T}{h} + \text{residual} \quad (3)$$

其中,*T*与*h*分别为混合层温度与混合层深度; ρ_0 为海 水密度(1.025×10³ kg/m³); c_p 为常压下的海水比热 (3 998 J/(kg·℃)); Q_{net} 为海表面的净热通量,可以通 过下式计算:

$$Q_{\rm net} = Q_{\rm sw} + Q_{\rm lw} + Q_{\rm sh} + Q_{\rm lh} \tag{4}$$

其中, Q_{sw} 为短波辐射, Q_{lw} 为长波辐射, Q_{sh} 为显热通 量, Q_{lh} 为潜热通量, 正值代表海洋获得热量。

各热通量可通过经验公式进行计算。短波辐射 热通量可由公式(5)给出:

 $Q_{sw} = I_0 (0.865 - 0.5C^2)(1 - \alpha_s)$ (5) 其中, I_0 为晴天的太阳辐射, C为云量, α_s 为海面反射 率(本文取 0.06^[7])。其他热通量,我们参考了 Kim^[17] 与 Park 等^[18]在研究中提出的公式,分别进行了计算:

$$Q_{\rm lw} = \varepsilon \sigma T_{\rm a}^4 (0.254 - 0.00495e_{\rm a})(1 - \delta C) + 4\varepsilon \sigma \theta_{\rm a}^4 (T_{\rm s} - T_{\rm a})$$
(6)

$$Q_{\rm sh} = \rho_{\rm a} c_{\rm a} c_{\rm sh} (0.98q_{\rm s} - q_{\rm a})W \tag{7}$$

$$Q_{\rm lh} = \rho_{\rm a} L c_{\rm lh} \left(0.98 q_{\rm s} - q_{\rm a} \right) W \tag{8}$$

$$10^{3}c_{\rm sh} = a_{\rm l} + b_{\rm l}W^{p_{\rm l}} + c_{\rm l}(W - 8)^{2}$$
⁽⁹⁾

$$10^{3}c_{\rm lh} = a_{2} + b_{2}W^{p_{2}} + c_{2}(W-8)^{2}$$
(10)

其中, ε为辐射率(0.97); σ为斯忒藩-波兹曼常数 (5.67×10⁻⁸ W/(m²·K⁴)); e_a 为水蒸汽压; δ为云参数,由 式(11)计算得到^[19-20]; θ_a 为气温(单位为 K); T_s 和 T_a 分别为海水温度与气温(单位为 °C); ρ_a 为空气密度, 由式(12)计算; c_a 为常压下的空气比热(1 005 J/(kg·K)); W为海表风速; L 为蒸发潜热(2.5×10⁶ J/kg); q_s 为海表 温度下的饱和比湿度(考虑到盐度影响,取 0.98^[21]), q_a 为空气比湿; 其他为系数^[22]。

海洋科学 / 2016 年 / 第 40 卷 / 第 1 期

图 1 西北太平洋海域的混合层深度与温度分布

Fig. 1 Map of the mixed layer depth and temperature in the study region

$$\delta = 0.00427\theta + 0.5036 \tag{11}$$

其中, θ 为纬度。

$$\rho_{\rm a} = \frac{p}{R_{\rm d} T_{\rm a} (1 + 0.61 q_{\rm a})} \tag{12}$$

其中, p 为海表气压; R_d 为干燥空气气体常数 (287 J/(kg·K))。

公式(1)中的 q(-h)为混合层底部的穿透辐射通 量,可以通过下式计算:

$$q(z) = q(0) \left[R \exp\left(\frac{z}{\gamma_1}\right) + (1 - R) \exp\left(\frac{z}{\gamma_2}\right) \right]$$
(13)

其中, *q*(0)为海表面的短波辐射通量; *R*、*γ*₁和₂/2 与水质有关,这里我们取 *R* 为 0.58, *γ*₁ 为 0.35, *γ*₂ 为 23,代表 I 类水体^[23]。

公式(3)的右边第三项为艾克曼平流项, 艾克曼 流矢量 *V*。可通过下式计算:

图 2 研究区域的锋面强度

Fig. 2 Gradient magnitude of the front in the study region

$$V_{\rm e} = -\frac{\tau_x}{\rho_0 fh} \tag{14}$$

其中, т, 为经向风应力, f 为科氏力参数。

第四项为混合层底部的卷吸项。Δ*T*表示混合层 与混合层以下区域的温度差,垂向速度*ω*由垂向风 应力旋度 curl 算出:

$$\omega = \operatorname{curl}_{z}\left(\frac{\tau}{\rho_{0}f}\right) = \frac{1}{\rho_{0}f}\left(\frac{\partial\tau_{x}}{\partial x} - \frac{\partial\tau_{y}}{\partial y}\right)$$
(15)

风应刀矢量
$$\mathbf{r}(\tau_x, \tau_y)$$
可以通过卜式得到:

$$T = \rho_{\rm a} C_{\rm D} | \boldsymbol{U} | \boldsymbol{U} \tag{16}$$

其中, *U*为 10 m 风速矢量; *C*_D为阻力系数, 通过下式 计算:

$$\begin{cases} C_{\rm D} = 1.14 \times 10^{-3}, & |\boldsymbol{U}| \leq 10 \text{ m/s} \\ C_{\rm D} = (0.49 + 0.065 |\boldsymbol{U}|) \times 10^{-3}, & |\boldsymbol{U}| > 10 \text{ m/s} \end{cases}$$
(17)

最后一项为残差项(residual),包括方程内没有考虑

到的因素,如:地转平流项、扩散项等。

1.3.2 锋面强度模型

由于我们定义锋面强度由公式(2)给出,因此, 锋面强度的时间变化方程可通过对公式(3)进行经向 微分得到:

$$\frac{\partial G}{\partial t} = -\frac{\partial}{\partial y} \left(\frac{Q_{\text{net}} - q(-h)}{\rho_0 c_p h} \right) + \frac{\partial}{\partial y} \left(V_e \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial y} \left(\omega \frac{\Delta T}{h} \right) + \text{residual'}$$
(18)

其中,最后一项(residual')为锋面强度方程本身的残差项。

2 结果

2.1 混合层模型

根据公式(3),我们评估了研究区域内的混合层 热量收支情况。图 3显示了研究区域内的混合层温 度时间变化趋势。

在研究区域内, 混合层温度从3月开始升高; 升 温趋势在6、7月间达到最大, 且北部升温较南部明 显; 8月间大部分区域混合层温度达到峰值, 同时西 南区域温度开始回落; 9月至2月间, 混合层温度总 体上属于降低趋势, 北部区域较南部降温更加明显。

图 3 研究区域的混合层温度变化趋势

通过进一步对混合层模型中的其他项进行计算, 我们得到了方程各项的贡献值。首先,我们对方程的 残差项进行了分析,如图 4。在研究区域的 150°E 以 西区域的残差相对较大,部分月份内该区域残差大 于±0.5×10⁻⁶ K/s。Hosoda^[24]在研究中指出,在受到黑 潮续流影响的区域,地转平流的贡献较净热通量多。 而我们在混合层模型中仅仅考虑到了艾克曼平流项, 而对地转流平流项则没有考虑。这可能是模型结果 (公式(3)右边项之和)不同于实际值(公式(3)左边项) 的主要原因。因此,在以下的研究中,我们以 150°E 为界,如图 2 中方框所示。图 5 展示了方框内的各项 时间变化。

根据图 5, 可以看出该区域内的混合层温度变化 在全年大部分时间主要受到净热通量项的影响且贡 献率超过 80%, 这与以往研究结果相近^[4-5]。在夏季与 秋季, 还受到诸如地转流等其他未知因素影响, 但净 热通量贡献率依然超过 60%。我们进一步分析了各热 通量的贡献。结果表明, 在全年的大部分时间中, 净短 波辐射贡献较大, 6 月达到最大, 最大值出现在约 20°~24°N, 160°~170°E 区域附近, 达 260 W/m²(图未 研究论文 · Linn → ARTICLE

图 4 公式(3)的残差项分布图 Fig. 4 Horizontal map of the residual term of Equation (3) in the study region

给出), 而对混合层温度的影响最大超过 4.3×10^{-6} K/s。这 主要是由于研究区域地处亚热带, 太阳辐射较强。净 长波辐射于 7 月份达最大值, 对混合层温度影响最 大约为– 1.7×10^{-6} K/s。相对于短波辐射与长波辐射, 潜 热通量项所占比例较低, 最大值仅约为– 1.1×10^{-6} K/s。 显热项与其他三项相比很小, 4 月中约为– 0.17×10^{-6} K/s, 其他月份均在– 0.12×10^{-6} K/s 左右。

图 5 混合层模型各项与净热通量各组成部分的时间变化 Fig. 5 Temporal variations of the area averaged terms and heat fluxes

2.2 锋面强度模型

图 6 为锋面强度变化的水平分布图。我们发现,9 月开始,锋面首先在约 25°N 以北 160°E 以西的区域 开始加强;10 月向西向南扩展到几乎覆盖整个研究 区域;11 月与 12 月锋面强度变化区域向南移动,中 心区域达到约 25°N 附近。其中,10~11 月锋面强度达 到最高,中心强度变化超过 0.6×10⁻⁷ K/(s·100km)。至 1 月时,锋面有所减弱,中心区域略向东移;随后的 2~4 月,强度变化继续降低;5 月,南部区域锋面首先开 始减弱;6 月开始,整个海域锋面加强基本消失;6~8 月 锋面迅速减弱,直至消失。其中,在7 月间,锋面强度减 弱程度最大,25°N 附近的最大值约–1×10⁻⁷ K/(s·100km)。

从总体上看,锋面仅在 5~8 月减弱,但幅度较大; 9~2 月,锋面加强; 3~4 月,锋面变化较小。Qiu 与 kawamura^[10]也在研究中提到西北太平洋区域的温度 锋面在 7、8 月间锋面强度有大幅度减弱的现象。为 了进一步了解锋面变化的具体物理机制,我们通过 公式 18、对锋面强度方程的各项进行了评估计算。

Kazmin 与 Rienecker^[6]在对全球大洋的进行的温 度锋的研究中,曾提出影响北太平洋的温度锋生锋

研究论文 • ┃ □_____ ARTICLE

消的主要因素为净热通量。我们的研究结果进一步 表明,在全年的大部分时间内,海洋温度锋面强度 变化的确受到净热通量的控制,尤其是锋面加强的 9~2 月与锋面减弱的 5~8 月。与图 5 不同的是,尽 管短波辐射依然占有重要的贡献比率,然而潜热所 占比重却相对提高了。从1月~5月,短波辐射南高 北低。潜热通量则北高南低,即南部水汽蒸发较北 部强。

图 6 锋面强度时间变化的空间分布 Fig. 6 Spatial distribution of the tendency of gradient magnitude

在进入北半球的夏季以后, 短波辐射通量的南北差 异开始减小, 8 月份达到最低, 约–1.7×10⁻⁷ K/(s·100km)。 它与潜热项的共同作用在 7 月达到最低值(图 7), 这 是锋面迅速消失的主要原因。图 8 给出了 8 月份的 短波辐射通量、潜热通量与混合层深度的水平分布。 太阳直射点北移, 使得北部的短波辐射通量升高, 甚 至高于南部, 30°N 附近的短波辐射超过到 230 W/m²。 而潜热通量依然是北部热量损失低于南部, –100W/m² 等值线在 130°E 区域内处在 22°N 左右。但是, 其随 着经度向东等值线逐渐向北偏移, 至 170°E 区域时, 等值线已位于 30°N 附近。根据公式(8), 我们知道潜 热通量的主要影响因子为风速以及饱和比湿。而饱 和比湿 q_s 是由下式进行计算:

$$q_{\rm s} = \frac{0.622e_{\rm s}}{P - 0.378e_{\rm s}}, \ e_{\rm s} = 6.112\exp(\frac{17.67T}{T + 243.5})$$
 (20)

其中, *e*_s为饱和水蒸汽压, *T* 为温度(此处为海表温度), *P* 为海表面气压。由此, 潜热通量的水平分布实际上 是受控于海气温差^[12]以及西北太平洋季风^[25-26]。

- 图 7 锋面强度模型中各项与净热通量各组成部分的时间 变化
- Fig. 7 Temporal variations of the terms in Eq.18 and the net heat fluxes

除了短波辐射和潜热通量,其他热通量的影响 较小。其中,长波辐射的贡献仅在 8 月较大,约为 0.3×10^{-7} K/(s·100km)。但由于 8 月间短波辐射的影

海洋科学 / 2016 年 / 第 40 卷 / 第 1 期

图 8 8月短波辐射通量、潜热通量与混合层深度水平分布 Fig. 8 Shortwave radiation flux, latent heat flux and the mixed layer depth in August

响最为明显,因此实际上其贡献可以忽略。

通过对区域平均结果与水平分布图的分析, 我 们发现基于混合层模型的锋面强度方程评估的 ∂G/∂t与实际根据混合层温度分布得到的锋面强度 变化还有所差距。Kobashi等^[12]与 Niiler等^[27]的研究 表明, 在 30°N 以北区域, 尤其是在日本沿岸附近主 要受到黑潮续流的影响, 而在 120°~170°E, 20°~ 25°N 的区域也存在着纬向地转流。同时, Kobashi等^[12] 在研究中提到, 该纬向地转流与区域内的海洋锋面 分布具有较高的联系。因此, 我们认为在研究中忽略 的地转流项是误差形成的主要原因。但考虑到误差 相对于控制因子(净热通量)较小, 我们的结论仍然 是可信的。

3 结论

本研究中,我们采用基于 Argo 浮标的历史数据 集、遥感风场数据以及再分析数据,并应用海洋混合 层模型,重点对西北太平洋区域 150°E 以东内的混 合层热量收支与海洋温度锋面的锋生与锋消机制进 行了研究。

根据研究,西北太平洋海域 150°E 以东的海域 内,混合层温度变化以及锋面的锋生与锋消现象主要 是受到了热通量以及其南北差异的影响。5 月开始,太 阳直射点的北移使得北部区域获得的热量开始大于南 部。6 月,短波辐射总量达到最高,最大值超过 260 W/m², 而 8 月南北差异达到最大,达-1.7×10⁻⁷ K/(s·100km)。同 时,受夏季西南季风与洋流等的影响,蒸发等损失的 热量南北差异较小,而北部混合层深度较南部浅, 这导致北部区域混合层海水温度升温较南部快,温 度锋面逐渐减弱,直到 9 月完全消失。10 月开始,伴 随着北半球进入秋冬季,并受到冬季西北季风影响, 西北太平洋的北部区域热量损失相对较大,而获得 热量却较小,北部区域降温幅度较南部更大。11 月, 北部部分区域的温度变化超过-1×10⁻⁶ K/s,而南部 则小于-0.5×10⁻⁶ K/s,温度锋面由此形成。12 月,南 北变化差异的减小,使得锋面加强程度逐渐减弱, 至 2 月间锋面强度趋于平稳,其变化逐渐消失。3~4 月间,尽管南部通过短波辐射获得热量较多,但热 量损失也较北部多,锋面变化并不明显。

在研究中,我们发现混合层模型的解析结果仍 不能完全解释实际情况。通过分析,我们发现误差的 出现主要与我们采用的混合层模型所忽略的项有关, 尤其是地转流平流项^[5,12]。对于地转平流项的计算, 可由地转流平衡方程推出^[28],而所需参数则可通过 卫星高度计数据得到。同时,根据以往的研究^[24,28-29], 我们也发现不同的时间尺度、气候异变以及混合层 的判定会对区域内的热量收支平衡造成影响。因此, 在今后的研究中,我们将针对不同时间尺度,分别 进行计算与分析,并进一步深入地讨论气候变化与 海气耦合造成的热量收支问题,同时优化方程组成 (如加入地转平流项等)。

参考文献:

- [1] Davis R E, de Szoeke R, Niiler P. Variability in the upper ocean during MILE. Part II: Modeling the mixed layer response[J]. Deep-Sea Res, 1981, 28: 1453-1475.
- [2] Niiler P P, Kraus E B. One-dimensional models of the upper ocean[C]. Kraus E B. Modelling and Prediction of the Upper Layers of the Ocean. Oxford: Pergamon Press, 1977: 152-172.
- [3] Qiu Bo, Kelly K A. Upper ocean heat balance in the Kuroshio Extension region[J]. J Phys Oceanogr, 1993, 23: 2027-2041.
- [4] Moisan J R, Niiler P P. The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950-1990)[J]. J Phys Oceanogr, 1998, 28: 401-421.
- [5] Dong Shenfu, Kelly K A. Heat budget in the Gulf Stream region: the importance of heat storage and ad-

vection[J]. J Phys Oceanogr, 2004: 34: 1214-1231.

- [6] Kazmin A S, Rienecker M M. Variability and frontogenesis in the large-scale oceanic frontal zones[J]. J Geophys Res, 1996, 101: 907-921.
- [7] Roden G I. On the variability of surface temperature fronts in the Western Pacific, as detected by satellite[J]. J Geophys Res, 1980, 85: 2704-2710.
- [8] Kazmin A S, Legeckis R, Fedorov K N. Equatorial waves in the temperature field of the ocean surface according to shipboard and satellite measurements[J]. Sov J Remote Sens, 1985, 4: 707-714.
- [9] Park K A, Ullman D S, Kim K, et al. Spatial and temporal variability of satellite-observed subpolar front in the East/Japan Sea[J]. Deep-sea Res I, 2007, 54: 453-470.
- [10] Qiu Chunhua, Kawamura H. Study on SST front disappearance in the subtropical North Pacific using microwave SSTs[J]. J Oceanogr , 2012, 68: 417-426.
- [11] Qiu Bo, Chen Shuiming. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. J Phys Oceanogr, 2005, 35(11): 2090-2103.
- [12] Kobashi F, Mitsudera H, Xie Shangping. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis[J]. J Geophys Res, 2006, 111, C09033, doi: 10.1029/ 2006JC003479.
- [13] Thomson R E, Fine I V. Estimating mixed layer depth from oceanic profile data[J]. J Atmos Ocean Technol, 2003, 20: 319-329.
- [14] Levitus S. Climatological atlas of the world ocean [R]. NOAA Professional Paper 13, Rockville: US Gov Printing Office, 1982.
- [15] Kara A B, Rochford P A, Hurlburt H E. Mixed layer depth variability over the global ocean[J]. J Geophys Res, 2003, 108, 3079, doi: 10.1029/2000JC000736, C3.
- [16] de Ruijter W P M. Effects of velocity shear in advective mixed-layer models[J]. J Phys Oceanogr, 1983, 13: 1589-1599.
- [17] Kim Y S. Estimate of heat transport across the sea surface near Japan with bulk methods[D]. Tokyo: Univ of Tokyo, 1992.
- [18] Park S, Deser C, Alexender M A. Estimation of the

surface heat flux response to sea surface temperature anomalies over the global oceans[J]. J Climate, 2005, 18: 4582-4599.

- [19] Budyko M I. Climate and Life[M]. New York: Academic Press, 1974.
- [20] Berliand M E, Berliand T G. Determining the net long-wave radiation of the earth with consideration of the effect of cloudiness[J]. Izv Akad Nauk SSSR Ser Gepfiz, 1952, 1: 64-78.
- [21] Kraus E B. Atmosphere-Ocean Interaction[M]. Oxford: University Press, 1972.
- [22] Kondo J. Air-sea bulk transfer coefficients in diabatic conditions[J]. Bound Layer Meteor, 1975, 9: 91-112.
- [23] Paulson C A, Simpson J J. Irradiative measurements in the upper ocean[J]. J Phys Oceanogr, 1997, 16: 25-38.
- [24] Hosoda K. Local phase relationship between sea surface temperature and net heat flux over weekly to annual periods in the extratropical North Pacific[J]. J Oceanogr, 2012, 68: 671-685.
- [25] 王慧,丁一汇,何金海.西北太平洋夏季风的气候学研究[J]. 气象学报, 2005, 63(4): 418-430.
 Wang Hui, Ding Yihui, He Jinhai. The climate research of summer monsoon over the Western North Pacific[J]. Acta Meteorologica Sinica, 2005, 63(4): 418-430.
- [26] 杨清华,张林.西北太平洋表面风应力分布和周期特 征分析[J]. 海洋预报, 2005, 22(4): 36-45.
 Yang Qinghua, Zhang Lin. Analysis of the distribution and period of the surface wind stress over the NW Pacific Ocean[J]. Marine Forecasts, 2005, 22(4): 36-45.
- [27] Niiler P P, Maximenko N A, McWilliams J C. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations[J]. Geophys Res Lett, 2003, 30(22): 2164, doi: 10.1029/ 2003GL018628.
- [28] Zhao Ning, Manda A, Han Zhen. Frontogenesis and frontolysis of the subpolar front in the surface mixed layer of the Japan Sea[J]. J Geophys Res: Oceans, 2014, 119: 1498-1509, doi: 10.1002/2013JC009419.
- [29] Dong Shenfu, Sprintall J, Gille S T, et al.. Southern Ocean mixed-layer depth from Argo float profiles[J]. J Geophys Res, 2008, 113, C06013. doi: 10.1029/ 2006JC004051.

Preliminary study on the frontogenesis and frontolysis of the oceanic temperature front in the northwest Pacific Ocean

ZHAO Ning¹, HAN Zhen^{1, 2}, LIU Xian-bo¹

(1. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 2. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China)

Received: Apr., 19, 2013 **Key words:** the northwest Pacific Ocean; ocean mixed layer; oceanic temperature front; frontolysis; frontogenesis

Abstract: The mechanisms of the mixed layer temperature and temperature front in the northwest Pacific Ocean were investigated using climatology Argo, remote sensing wind, and reanalysis data from the National Center for Environmental Prediction/National Center for Atmospheric Research. Based on a mixed layer heat budget model, the net heat flux term was found to be the main controlling factor of temperature variability in the study region. Moreover, seasonal variations in the oceanic front were investigated and found to be strongest during September to February and weakest during May to August. This study determined that the strengthening and weakening of the temperature front were mainly controlled by the net heat fluxes and in particular, the net shortwave and net sensible heat fluxes.

(本文编辑: 刘珊珊)

CONTENTS Vol.40/No.1/Jan.,15/2016

Genetic diversity of different populations of Scapharca subcrenata based on mitochondrial
COI gene
YANG Ai-guo, WU Biao, ZHOU Li-qing, DONG Chun-guang (9)
The induction of metamorphosis in cultchless oysters (Crassostrea angulata and Crassostrea
gigas)CHEN Heng, FANG Jun, TENG Shuang-shuang,
XIAO Guo-giang, ZHANG Jiong-ming, CHAI Xue-liang (17)
Establishment of core collection for Saccharina japonica using molecular markers
CUI Cui-ju, LI Yan, LIU Yan-ling, LI Xiao-jie, LUO Shi-ju,
WU Rui-na, WANG Li-gin, ZHANG Zhuang-zhi, SUN Juan, TIAN Xin (24)
Analysis of combining ability of survival of imported Litopenaeus vannamei populations
under temperature and salinity stress
······································
Biological purification of Atlantic salmon (Salmo salar) wastewater with the polyculture
of Bivalves and Macroalgae
LI Meng, SLIN Guo-xiang, WANG Shun-kun, YLI Kai-song, LILI Ying (39)
Community structure and diversity of macrobenthos in the western waters of Liaodona Bay
during summar
WANG Zhan zhong JI Viang ving ZHAO Ning VI Zi shon (47)
WANG Zhen-zhong, Ji Alang-xing, ZHAO Ning, TO Zi-shan (47)
Effect of feeding preferences, temperature, and size on food intake of <i>Rapana venosa</i>
SONG Jun-peng, FANG Jian-bing,
SOING Hao, ZHANG Tao, BAN Shao-Jun, PAN Yang, Li Zhao-Xia (53)
Species composition and biodiversity of macrotauna in Xinghua Bay, Fujian
DENG Yu-juan, DONG Shu-gang, LIU Xiao-shou (63)
The effect of cellular redox state on the formation of <i>Ulva prolifera</i> sporangia
WANG Jing, NIU Cong-cong, WANG Hui, HUAN Li (67)
Concentration, distribution, and ecological risk assessment of heavy metals in sediments from the
tail reaches of the Yellow River Estuary ZHAO Ming-ming, WANG Chuan-yuan,
SUN Zhi-gao, SUN Wan-long, LYU Ying-chun, ZHAO Hao-Jie, LU Yong (75)
Spatiotemporal variations of petroleum hydrocarbon and its influencing factors in seawater
of Qinzhou Bay YANG Bin, ZHONG Qiu-ping,
ZHANG Chen-xiao, LU Dong-liang, LIANG Yan-ru, LI Shang-ping (84)
Sea surface temperature anomaly's interannual variability in pelagic fishing grounds of China
JI Shi-jian, ZHOU Wei-feng, FAN Wei, JIN Shao-fei, CUI Xue-sen (92)
Effects of high-intensity human activities on the environment variations of coastal wetland in the
Quanzhou Bay, China YE Xiang, WANG Ai-jun, MA Mu, FANG Jian-yong (100)
Determination of inversion current field in the Jiaozhou Bay based on coastal acoustic
tomography data LIU Xu-dong, LIN Ju, WANG Huan, ZHU Xiao-hua (111)
Sediment depositional characteristics of North Passage in the Yangtze River Estuary
DENG Zhi-rui, HE Qing, XING Chao-feng, GUO Lei-cheng, WANG Xian-ye (122)
Preliminary study on the frontogenesis and frontolysis of the oceanic temperature front in
the northwest Pacific Ocean
Variability of Kuroshio based on 20-year altimeter data
ZHAO Xin-hua, YANG Jun-gang, CUI Wei (137)
Research progress in extraction, purification, and determination of properties of aquatic
collagen
Mechanistic target of rapamycin signaling in aquatic animals
WANG Lei, LIU Mei, WANG Bao-iie, JIANG Ke-vong, SUN Guo-giong (154)
Investigation into the North Pacific meridional overturning circulation and heat and salt
transport: Progress report
LIU Hong-wei, ZHANG Qi-long, DUAN Yong-liang, XU Yong-sheng (160)
sectoring the sectoring and sectoring intering the sectoring of the sectoring (100)

澄洋科学

(Monthly) Vol.40/No.1/2016

Superintended By the Chinese Academy of Sciences Sponsored By Institute of Oceanology, the Chinese Academy of Sciences **Published By** Science Press **Chief Editor** LI Tie-gang Foreign China International Book Trading Corporation Add: P.O.Box 399, Beijing, 100044, China **Managing Editor** ZHANG Pei-xin **Editorial Office** Add: 7 Nanhai Road, 266071, Qingdao China Tel: 0532-82898755, 82898751, 82898953 E-mail: hykxbjb@163.com Http://www.marinejournal.cn

ISSN 1000 - 3096 CN 37 - 1151/P

目次

中国标准刊号: <u>ISSN 1000 - 3096</u> /国内邮发代号: 2-655/国外发行代号: M66666/国内外公开发行/本刊定价: 38.00元